Singular Value Decomposition for High Dimensional Data

نویسنده

  • DAN YANG
چکیده

Singular value decomposition is a widely used tool for dimension reduction in multivariate analysis. However, when used for statistical estimation in high-dimensional low rank matrix models, singular vectors of the noise-corrupted matrix are inconsistent for their counterparts of the true mean matrix. In this talk, we suppose the true singular vectors have sparse representations in a certain basis. We propose an iterative thresholding algorithm that can estimate the subspaces spanned by leading left and right singular vectors and also the true mean matrix optimally under Gaussian assumption. We further turn the algorithm into a practical methodology that is fast, datadriven and robust to heavy-tailed noises. Simulations and a real data example further show its competitive performance. This is a joint work with Andreas Buja and Zongming Ma. For further information and inquiries about building access for persons with disabilities, please contact Dan Moreau at 773.702.8333 or send him an email at [email protected]. If you wish to subscribe to our email list, please visit the following website: https://lists.uchicago.edu/web/arc/statseminars.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images

In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

A Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size

The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...

متن کامل

Noise Effects on Modal Parameters Extraction of Horizontal Tailplane by Singular Value Decomposition Method Based on Output Only Modal Analysis

According to the great importance of safety in aerospace industries, identification of dynamic parameters of related equipment by experimental tests in operating conditions has been in focus. Due to the existence of noise sources in these conditions the probability of fault occurrence may increases. This study investigates the effects of noise in the process of modal parameters identification b...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012